If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-20t+21=0
a = 3; b = -20; c = +21;
Δ = b2-4ac
Δ = -202-4·3·21
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{37}}{2*3}=\frac{20-2\sqrt{37}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{37}}{2*3}=\frac{20+2\sqrt{37}}{6} $
| -14x=132=26(x-18) | | 3x =−21 | | w-13=1 | | 45n-180n+360=0 | | 6,870x7= | | (x-7)(x-3)=x | | y=-10+76 | | -8+7m=6m | | 9−9q=–10q | | 3g–5=2g–8 | | 218=71-w | | 29/7(x+2)=11/3 | | A(x)=(-7x-2)²-(5x-3) | | 6(y+2)=10 | | 5/7=x/77 | | 1/3+a=5/8 | | 3n=10.02 | | m/4+7=17 | | x³-64=0 | | 2x^2+4x-21=2x+1 | | 6(a+2)=4(a+5) | | 22x+3+25x+-1=96 | | 9w+8=1 | | 3/5j=6/7 | | A=c/3 | | -6/7v=36 | | 1k+4=5k-31k+4=5k−3 | | b*11=24 | | 24p=2,292 | | 15/5=z/25 | | 9w+8=−1 | | 2/5x-2=11-1/4 |